Stress, glucocorticoids and absences in a genetic epilepsy model

Publication Type:

Journal Article

Source:

Horm Behav, Volume 61, Number 5, p.706-710 (2012)

ISBN:

1095-6867 (Electronic)00

DOI Name (links to online publication)

10.1016/j.yhbeh.2012.03.004

Abstract:

Although stress can alter the susceptibility of patients and animal models to convulsive epilepsy, little is known about the role of stress and glucocorticoid hormones in absence epilepsy. We measured the basal and acute stress-induced (foot-shocks: FS) concentrations of corticosterone in WAG/Rij rats, non-epileptic inbred ACI rats and outbred Wistar rats. The WAG/Rij strain is a genetic model for absence epilepsy and comorbidity for depression, which originates from the population of Wistar rats and, therefore, shares their genetic background. In a separate experiment, WAG/Rij rats were exposed to FS on three consecutive days. Electroencephalograms (EEGs) were recorded before and after FS, and the number of absence seizures (spike-wave-discharges, SWDs) was quantified. Both WAG/Rij rats and ACI rats exhibited elevated basal levels of corticosterone and a rapid corticosterone increase in response to acute stress. The WAG/Rij rats also displayed the most rapid normalization of corticosterone during the recovery phase compared to that of ACI and Wistar rats. FS had a biphasic effect on SWDs; an initial suppression was followed by an aggravation of the SWDs. By the third day, this aggravation of seizures was present in the hour preceding FS. This increase in SWDs may arise from anticipatory stress about the upcoming FS. Together, these results suggest that the distinct secretion profile of corticosterone found in WAG/Rij rats may contribute to the severity of the epileptic phenotype. Although the acute stressor results in an initial suppression of SWDs followed by an increase in SWDs, stress prior to a predictable negative event aggravates absences.

18/01/2013