Differential MR/GR activation in mice results in emotional states beneficial or impairing for cognition

Publication Type:

Journal Article


Neural Plast, Volume 2007, Number Articlr ID, p.1-11 (2007)


1687-5443 (Electronic)

DOI Name (links to online publication)



Adrenal Cortex Hormones/administration; &; dosage; Adrenalectomy; Animals; Anxiety/blood/metabolism; Cognition/*physiology; Cognition Disorders/blood/*metabolism; Corticosterone/blood; Emotions/drug effects/*physiology; Male; Mice; Mice; Inbred C57BL; R


Corticosteroids regulate stress response and influence emotion, learning, and memory via two receptors in the brain, the high-affinity mineralocorticoid (MR) and low-affinity glucocorticoid receptor (GR). We test the hypothesis that MR- and GR-mediated effects interact in emotion and cognition when a novel situation is encountered that is relevant for a learning process. By adrenalectomy and additional constant corticosterone supplement we obtained four groups of male C57BL/6J mice with differential chronic MR and GR activations. Using a hole board task, we found that mice with continuous predominant MR and moderate GR activations were fast learners that displayed low anxiety and arousal together with high directed explorative behavior. Progressive corticosterone concentrations with predominant action via GR induced strong emotional arousal at the expense of cognitive performance. These findings underline the importance of a balanced MR/GR system for emotional and cognitive functioning that is critical for mental health.